Serveur d'exploration sur le peuplier

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Modeling of TCE diffusion to the atmosphere and distribution in plant stems.

Identifieur interne : 004228 ( Main/Exploration ); précédent : 004227; suivant : 004229

Modeling of TCE diffusion to the atmosphere and distribution in plant stems.

Auteurs : Xingmao Ma [États-Unis] ; Joel Burken

Source :

RBID : pubmed:15461166

Descripteurs français

English descriptors

Abstract

Fate of chlorinated solvents in phytoremediation has been delineated by many discoveries made in recent years. Plant uptake, metabolism, rhizosphere degradation, accumulation, and volatilization were shown to occur to differing degrees for many organic contaminants including chlorinated solvents. Among these mechanistic findings, recent research confirmed that volatile organic compounds (VOCs) volatilize from stems and that the resulting diffusive flux to the atmosphere is related to exposure concentration and to height up the stem. A comprehensive model was developed based upon all identified fate and transport mechanisms for VOCs, including translocation in the xylem flow and diffusion. The dispersion and diffusion in the radial direction were considered as one process (effective diffusion) as the two could not be investigated individually. The mechanism-based model mathematically indicates an exponential decrease of concentrations with height. While an analytic solution for the comprehensive model was not attained, it can serve as a starting point for other modeling efforts. The comprehensive model was simplified in this work for practical application to experimentally obtained data on trichloroethylene (TCE) fate. Model output correlated well with experimental results, and effective diffusivities for TCE in plant tissues were obtained through the model calibrations. The simplified model approximated TCE concentrations in the transpiration stream as well as TCE volatilization to the atmosphere. Xylem transport, including advection, dispersion, and diffusion through cell walls with subsequent volatilization to the atmosphere, is a major fate for VOCs in phytoremediation.

DOI: 10.1021/es035435b
PubMed: 15461166


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Modeling of TCE diffusion to the atmosphere and distribution in plant stems.</title>
<author>
<name sortKey="Ma, Xingmao" sort="Ma, Xingmao" uniqKey="Ma X" first="Xingmao" last="Ma">Xingmao Ma</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Civil, Architectural and Environmental Engineering, Butler-Carlton Hall, 1870 Miner Circle, University of Missouri-Rolla, Rolla, Missouri 65409, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Civil, Architectural and Environmental Engineering, Butler-Carlton Hall, 1870 Miner Circle, University of Missouri-Rolla, Rolla, Missouri 65409</wicri:regionArea>
<wicri:noRegion>Missouri 65409</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Burken, Joel" sort="Burken, Joel" uniqKey="Burken J" first="Joel" last="Burken">Joel Burken</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2004">2004</date>
<idno type="RBID">pubmed:15461166</idno>
<idno type="pmid">15461166</idno>
<idno type="doi">10.1021/es035435b</idno>
<idno type="wicri:Area/Main/Corpus">004189</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">004189</idno>
<idno type="wicri:Area/Main/Curation">004189</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">004189</idno>
<idno type="wicri:Area/Main/Exploration">004189</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Modeling of TCE diffusion to the atmosphere and distribution in plant stems.</title>
<author>
<name sortKey="Ma, Xingmao" sort="Ma, Xingmao" uniqKey="Ma X" first="Xingmao" last="Ma">Xingmao Ma</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Civil, Architectural and Environmental Engineering, Butler-Carlton Hall, 1870 Miner Circle, University of Missouri-Rolla, Rolla, Missouri 65409, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Civil, Architectural and Environmental Engineering, Butler-Carlton Hall, 1870 Miner Circle, University of Missouri-Rolla, Rolla, Missouri 65409</wicri:regionArea>
<wicri:noRegion>Missouri 65409</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Burken, Joel" sort="Burken, Joel" uniqKey="Burken J" first="Joel" last="Burken">Joel Burken</name>
</author>
</analytic>
<series>
<title level="j">Environmental science & technology</title>
<idno type="ISSN">0013-936X</idno>
<imprint>
<date when="2004" type="published">2004</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Atmosphere (MeSH)</term>
<term>Biological Transport (MeSH)</term>
<term>Diffusion (MeSH)</term>
<term>Models, Biological (MeSH)</term>
<term>Plant Stems (chemistry)</term>
<term>Plant Stems (metabolism)</term>
<term>Plant Transpiration (MeSH)</term>
<term>Populus (chemistry)</term>
<term>Populus (metabolism)</term>
<term>Soil Pollutants (analysis)</term>
<term>Soil Pollutants (metabolism)</term>
<term>Solvents (analysis)</term>
<term>Solvents (metabolism)</term>
<term>Tissue Distribution (MeSH)</term>
<term>Trichloroethylene (analysis)</term>
<term>Trichloroethylene (metabolism)</term>
<term>Volatilization (MeSH)</term>
<term>Waste Management (methods)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Atmosphère (MeSH)</term>
<term>Diffusion (MeSH)</term>
<term>Distribution tissulaire (MeSH)</term>
<term>Gestion des déchets (méthodes)</term>
<term>Modèles biologiques (MeSH)</term>
<term>Polluants du sol (analyse)</term>
<term>Polluants du sol (métabolisme)</term>
<term>Populus (composition chimique)</term>
<term>Populus (métabolisme)</term>
<term>Solvants (analyse)</term>
<term>Solvants (métabolisme)</term>
<term>Tiges de plante (composition chimique)</term>
<term>Tiges de plante (métabolisme)</term>
<term>Transpiration des plantes (MeSH)</term>
<term>Transport biologique (MeSH)</term>
<term>Trichloroéthylène (analyse)</term>
<term>Trichloroéthylène (métabolisme)</term>
<term>Volatilisation (MeSH)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="analysis" xml:lang="en">
<term>Soil Pollutants</term>
<term>Solvents</term>
<term>Trichloroethylene</term>
</keywords>
<keywords scheme="MESH" qualifier="analyse" xml:lang="fr">
<term>Polluants du sol</term>
<term>Solvants</term>
<term>Trichloroéthylène</term>
</keywords>
<keywords scheme="MESH" qualifier="chemistry" xml:lang="en">
<term>Plant Stems</term>
<term>Populus</term>
</keywords>
<keywords scheme="MESH" qualifier="composition chimique" xml:lang="fr">
<term>Populus</term>
<term>Tiges de plante</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Plant Stems</term>
<term>Populus</term>
<term>Soil Pollutants</term>
<term>Solvents</term>
<term>Trichloroethylene</term>
</keywords>
<keywords scheme="MESH" qualifier="methods" xml:lang="en">
<term>Waste Management</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Polluants du sol</term>
<term>Populus</term>
<term>Solvants</term>
<term>Tiges de plante</term>
<term>Trichloroéthylène</term>
</keywords>
<keywords scheme="MESH" qualifier="méthodes" xml:lang="fr">
<term>Gestion des déchets</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Atmosphere</term>
<term>Biological Transport</term>
<term>Diffusion</term>
<term>Models, Biological</term>
<term>Plant Transpiration</term>
<term>Tissue Distribution</term>
<term>Volatilization</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Atmosphère</term>
<term>Diffusion</term>
<term>Distribution tissulaire</term>
<term>Modèles biologiques</term>
<term>Transpiration des plantes</term>
<term>Transport biologique</term>
<term>Volatilisation</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Fate of chlorinated solvents in phytoremediation has been delineated by many discoveries made in recent years. Plant uptake, metabolism, rhizosphere degradation, accumulation, and volatilization were shown to occur to differing degrees for many organic contaminants including chlorinated solvents. Among these mechanistic findings, recent research confirmed that volatile organic compounds (VOCs) volatilize from stems and that the resulting diffusive flux to the atmosphere is related to exposure concentration and to height up the stem. A comprehensive model was developed based upon all identified fate and transport mechanisms for VOCs, including translocation in the xylem flow and diffusion. The dispersion and diffusion in the radial direction were considered as one process (effective diffusion) as the two could not be investigated individually. The mechanism-based model mathematically indicates an exponential decrease of concentrations with height. While an analytic solution for the comprehensive model was not attained, it can serve as a starting point for other modeling efforts. The comprehensive model was simplified in this work for practical application to experimentally obtained data on trichloroethylene (TCE) fate. Model output correlated well with experimental results, and effective diffusivities for TCE in plant tissues were obtained through the model calibrations. The simplified model approximated TCE concentrations in the transpiration stream as well as TCE volatilization to the atmosphere. Xylem transport, including advection, dispersion, and diffusion through cell walls with subsequent volatilization to the atmosphere, is a major fate for VOCs in phytoremediation.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">15461166</PMID>
<DateCompleted>
<Year>2005</Year>
<Month>02</Month>
<Day>03</Day>
</DateCompleted>
<DateRevised>
<Year>2019</Year>
<Month>07</Month>
<Day>14</Day>
</DateRevised>
<Article PubModel="Print">
<Journal>
<ISSN IssnType="Print">0013-936X</ISSN>
<JournalIssue CitedMedium="Print">
<Volume>38</Volume>
<Issue>17</Issue>
<PubDate>
<Year>2004</Year>
<Month>Sep</Month>
<Day>01</Day>
</PubDate>
</JournalIssue>
<Title>Environmental science & technology</Title>
<ISOAbbreviation>Environ Sci Technol</ISOAbbreviation>
</Journal>
<ArticleTitle>Modeling of TCE diffusion to the atmosphere and distribution in plant stems.</ArticleTitle>
<Pagination>
<MedlinePgn>4580-6</MedlinePgn>
</Pagination>
<Abstract>
<AbstractText>Fate of chlorinated solvents in phytoremediation has been delineated by many discoveries made in recent years. Plant uptake, metabolism, rhizosphere degradation, accumulation, and volatilization were shown to occur to differing degrees for many organic contaminants including chlorinated solvents. Among these mechanistic findings, recent research confirmed that volatile organic compounds (VOCs) volatilize from stems and that the resulting diffusive flux to the atmosphere is related to exposure concentration and to height up the stem. A comprehensive model was developed based upon all identified fate and transport mechanisms for VOCs, including translocation in the xylem flow and diffusion. The dispersion and diffusion in the radial direction were considered as one process (effective diffusion) as the two could not be investigated individually. The mechanism-based model mathematically indicates an exponential decrease of concentrations with height. While an analytic solution for the comprehensive model was not attained, it can serve as a starting point for other modeling efforts. The comprehensive model was simplified in this work for practical application to experimentally obtained data on trichloroethylene (TCE) fate. Model output correlated well with experimental results, and effective diffusivities for TCE in plant tissues were obtained through the model calibrations. The simplified model approximated TCE concentrations in the transpiration stream as well as TCE volatilization to the atmosphere. Xylem transport, including advection, dispersion, and diffusion through cell walls with subsequent volatilization to the atmosphere, is a major fate for VOCs in phytoremediation.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Ma</LastName>
<ForeName>Xingmao</ForeName>
<Initials>X</Initials>
<AffiliationInfo>
<Affiliation>Department of Civil, Architectural and Environmental Engineering, Butler-Carlton Hall, 1870 Miner Circle, University of Missouri-Rolla, Rolla, Missouri 65409, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Burken</LastName>
<ForeName>Joel</ForeName>
<Initials>J</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>Environ Sci Technol</MedlineTA>
<NlmUniqueID>0213155</NlmUniqueID>
<ISSNLinking>0013-936X</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D012989">Soil Pollutants</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D012997">Solvents</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>290YE8AR51</RegistryNumber>
<NameOfSubstance UI="D014241">Trichloroethylene</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D001272" MajorTopicYN="N">Atmosphere</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D001692" MajorTopicYN="N">Biological Transport</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004058" MajorTopicYN="N">Diffusion</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008954" MajorTopicYN="N">Models, Biological</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018547" MajorTopicYN="N">Plant Stems</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018526" MajorTopicYN="Y">Plant Transpiration</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D032107" MajorTopicYN="N">Populus</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012989" MajorTopicYN="N">Soil Pollutants</DescriptorName>
<QualifierName UI="Q000032" MajorTopicYN="N">analysis</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012997" MajorTopicYN="N">Solvents</DescriptorName>
<QualifierName UI="Q000032" MajorTopicYN="N">analysis</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014018" MajorTopicYN="N">Tissue Distribution</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014241" MajorTopicYN="N">Trichloroethylene</DescriptorName>
<QualifierName UI="Q000032" MajorTopicYN="N">analysis</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014835" MajorTopicYN="N">Volatilization</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018505" MajorTopicYN="N">Waste Management</DescriptorName>
<QualifierName UI="Q000379" MajorTopicYN="N">methods</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="pubmed">
<Year>2004</Year>
<Month>10</Month>
<Day>6</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2005</Year>
<Month>2</Month>
<Day>4</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2004</Year>
<Month>10</Month>
<Day>6</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">15461166</ArticleId>
<ArticleId IdType="doi">10.1021/es035435b</ArticleId>
</ArticleIdList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>États-Unis</li>
</country>
</list>
<tree>
<noCountry>
<name sortKey="Burken, Joel" sort="Burken, Joel" uniqKey="Burken J" first="Joel" last="Burken">Joel Burken</name>
</noCountry>
<country name="États-Unis">
<noRegion>
<name sortKey="Ma, Xingmao" sort="Ma, Xingmao" uniqKey="Ma X" first="Xingmao" last="Ma">Xingmao Ma</name>
</noRegion>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PoplarV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 004228 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 004228 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PoplarV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:15461166
   |texte=   Modeling of TCE diffusion to the atmosphere and distribution in plant stems.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:15461166" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PoplarV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 12:07:19 2020. Site generation: Wed Nov 18 12:16:31 2020